Our world is driven by the materials that are currently available. Millions of products, machines, and innovative technologies are made better because of a new and improved material. In fact, many of today’s industrial problems await materials solutions: the automobile industry needs lighter, fuel efficient car bodies. Cell phone and tablet manufacturers are looking for of ultra-thin, damage-resistant glass for displays. Biomedical doctors and engineers are using biologically compatible materials to repair and replace parts of the human body. Computer technology seeks materials that store more information.

The materials science and engineering program at E-JUST provides unique and high impact opportunity to its graduates to be involved in many Hi-Tech industries such as Electronics, Energy, Petrochemical, Pharmaceutical, Automotive, Steel, etc.

VISION

The Materials Science and Engineering program at E-JUST aiming at worldwide recognizing for excellence in education and research in materials science and engineering discipline. The program is expected to be a destination for students, researchers, and industry people seeking to pursue scholarship that advances the science and engineering of materials. The program will be a source of research data, product development, technical innovation, scientists, and engineers who will best serve their country, nation and the world.

MISSION

Providing study and research environment that encourages collaboration and engagement of modern education of undergraduate and graduate students as well as professionals in the industry. This unique environment provides a strong and solid foundation for introducing and preparing engineers and scientists in materials research, developing new and important technical innovations

OBJECTIVES

The main target of MSE program at E-JUST is to advance to the national and international market a Materials Engineer who is qualified to carry out the following duties:

    Devise new materials and improve the existing materials

    Develop new methods and technologies of producing materials

    Select materials for parts and devices for different systems

    Perform failure analysis to figure out the reasons of failure

    Analyze and investigate the structure of a material on different level : atomic structure, microstructure and macrostructure to determine characteristics

    Function in multidisciplinary teams

    Communicate effectively

PROGRM OUTCOMES

General outcomes

    Apply knowledge of mathematics, science and engineering concepts to the solution of engineering problems.

    Design and conduct experiments as well as analyze and interpret data.

    Design a system; component and process to meet the required needs within realistic constraints.

    Work effectively within multi-disciplinary teams.

    Identify, formulate and solve fundamental engineering problems.

    Display professional and ethical responsibilities; and contextual Understanding

    Communicate effectively.

    Consider the impacts of engineering solutions on society & environment.

    Engage in self- and life- long learning.

    Demonstrate knowledge of contemporary engineering issues.

    Use the techniques, skills, and appropriate engineering tools, necessary for engineering practice and project management.

MSE outcomes

    Knowledge of the fundamental science and engineering principles relevant to materials design, development and engineering application.

    Understand the relationship between nano/microstructure, characterization, properties and processing and design of materials.

    Develop students’ knowledge of modern materials science and engineering and related new emerging technologies.

    Develop students’ communication skills and ability to work collaboratively in the field of materials science and engineering.

    Access to exceptional state-of-the-art laboratories that enables the development of advanced expertise in materials processing and characterization.

    Ability to modeling and solving problems in materials design, processing, characterization and structural analysis.

    Enhance students’ practical skills in materials selection, failure analysis and maintenance.

    Explain& present concepts of projects management including planning, scheduling, cost estimates, finance, bidding and contracts.

    Analyze and solve the problems presented by industrial entities.

    Create effective and novel solutions to practical problems.

    Apply the acquired skills in a commercial or industrial environment.

    Use the appreciate ICT tools in a variety of materials engineering aspects.
    Prepare students for careers in industry and for further study in graduate school.

Compulsory Courses (Each course weights 3 credit hours)

    (Applied Engineering)

    MSE 221 Fundamentals of Materials Science

    MSE 222 Materials Science Lab.,

    MSE311 Structures and Properties of Materials

    MSE 312 Physics of Solid Materials

    MSE 313 Chemistry of Materials

    MSE 314 Thermodynamics and Phase Transformations in Solids

    MSE 315 Fundamental of Materials Processing

    MSE 316 Project Based Learning on MSE

    MSE 321 Seminar on MSE

    MSE 322 Mechanical Behavior of Materials

    MSE 323 Mathematical Methods for Materials Computation

(Specialization)

    MSE 324 Ceramic and glasses

    MSE 325 Polymeric Engineering Materials

    MSE 411 Electrochemistry and Corrosion

    MSE 412 Structural metallic materials

    MSE 421 Nanomaterials for Engineers

    MSE 422 Materials Selection in Engineering Design and Failure analysis

Senior Project

    MSE 410 Graduation Project (1)
    MSE 500 Graduation Project (2)

Industrial Training

    MSE 599 Industrial Training (2 modules)

Elective Courses (Each course weights 3 credit hours)

    MSE 414 Organic Chemistry

    MSE 415 Materials Characterization

    MSE 416 Kinetics and Diffusion processes of Materials

    MSE 417 Introduction to composite materials

    MSE 418 Functionally graded Materials

    MSE 419 Science and Engineering of Nonferrous Materials

    MSE 423 Electronic Properties of Materials

    MSE 424 Biomaterials

    MSE 425 Electron Microscopy and Diffraction Theory

    MSE 426 Thin Film Technology

    MSE 427 Smart Materials

    MSE 428 Materials for Energy Applications

    MSE 429 Magnetic Materials

    MSE 430 Semiconductor Materials

    MSE 431 Introduction of Advanced Materials

    MSE 432 Optical Properties of Materials

    MSE 433 Deformation and Fracture of Engineering Materials

    MSE 434 Fundamentals of Stress and Strain, and Deformation of Metals

    MSE 435 Intermolecular Force and Aggregation

    MSE 436 Continuum Mechanics

    MSE 437 Dielectric Materials Science

    MSE 438 Lattice Defects and Dislocation

    MSE 439 Advanced Physical Metallurgy

    MSE 440 Extractive metallurgy